

Writing an “Enterprise Scheduler” using Perl,
MySQL, SSH, and POE

Albert P. Tobey
Pittsburgh Perl Workshop

September 23, 2006

http://www.tobert.org
tobert@gmail.com

http://www.tobert.org/

Developers, Advisors, and Testers:
Aaron Nienhuis
Keith Sederholm

Rick Siner
Joel Meulenberg
Keith Brunsting

Jeff Klein

IS Leadership:
Jim Slubowski

Mike Trus
Krischa Winright

Rick Siner

Thank you to:

Priority Health is often looking for talented Perl and PL/SQL developers.
http://www.priorityhealth.com/corporate/careers/opportunities/

 The Problem

● We upgraded our ERP-like system in 2002.
● It runs Sybase.
● That's fine, but we're an Oracle shop.
● Replication!
● Sybase -> Datamirror -> Oracle
● Now back it up, smart guy.

Process Overview

● kick all users out of FACETS
● quiesce all transactions in Sybase
● stop replication
● shut down Sybase
● put the Oracle ODS in hot backup mode
● start BCV copy operation on the Sybase volumes (disk snapshot)
● export the ODS snapshot from the GDS
● export the ODS volume group from the GDS host
● start BCV copy operation to update the ODS snapshot
● put the GDS into hot backup mode
● start BCV copy operation on the GDS
● start backup of each BCV after copy is complete
● after ODS backup completes:

● import the volume group on the GDS host
● rename the oracle instance
● start Oracle
● export relevant tables
● import tables into the GDS read-only

● start Sybase
● start the ODS
● start replication
● once replication is complete, make Sybase available to users

Solution Requirements

● sane dependency management

● parallelize as widely as possible

● run arbitrary code on multiple hosts

● centralized management

● configuration separate from program

● extensive logging

● ability to notify administrators of status and incidents

Tools

● Perl
– rapid prototype/development
– also great for production

● SSH
– well-understood and available

● MySQL
– I knew it better than Oracle at the time

● POE (Perl Object Environment)
– Handy for multiplexing lots of things in a single

thread

Dependency Graphs

● Most of it was written before somebody pointed
out it was executing graphs.

● Each job group can be thought of as either a
graph or a state machine, although it fits neither
well formally.

● Jobs can depend on an arbitrary number of
jobs.

● They actually depend on a combination of job +
job state.

Basic Data Model

Sessions

my $code = <<EOCODE;
my $sth = $dbh->prepare(“[ARG0]”);
$sth->execute('[ARG1]', [ARG2]);
$sth->finish;

EOCODE

my $code = <<EOCODE;
my $sth = $dbh->prepare(“

UPDATE huge_table SET foo=? WHERE bar=?
”);

$sth->execute('w00t', 42);
$sth->finish;

EOCODE

pigeon_hole_store(“index_ddl”, $dropped_index_ddl);

...

my $ddl = pigeon_hole_fetch(“index_ddl”);
$dbh->do($ddl);

Pigeon Hole

Job Arguments

Perl Object Environment

● Event model
● Makes maintaining many loops easy
● Makes managing multiple ssh connections

easier
● Handles all of the traditional I/O problems

– non-blocking stdin/stdout/stderr
– forking processes and controlling their stdio

● http://poe.perl.org, freenode: #POE

http://poe.perl.org/

POE::Wheel::Run
POE::Session->create(...);
$poe_kernel->run;

my $cmd = "/home/page/client.pl";
my $prog = "/usr/bin/ssh -l $user $hostname $cmd";

my $wheel = POE::Wheel::Run->new(
Program => $prog,
StdioFilter => POE::Filter::Line->new,
StdoutEvent => 'handle_ssh_output',
StderrEvent => 'handle_ssh_error'

);

$wheel->put("Foo the bar over there");

sub handle_ssh_output {
my $buffer = $_[ARG0];
print "Got \"$buffer\" from client!\n";

}

sub handle_ssh_error {
my $buffer = $_[ARG0];
print STDERR "Got error \"$buffer\" from client!\n";

}

Cheesy Client Protocol

● Very simple
● All plain text
● States are prepended to messages
● Possible to support multiple job groups on a

single ssh connection

EVAL_CODE(500,128): system(“rm -rf /*”);

STATUS_REPORT(500,128): RUNNING
RUNNING(500,128): blah blah blah blah blah

client.pl

● Uses POE
● forks before evaling code

– protects other jobs from segfaults and other things
that can crash through eval()

● mini-API for job logging, control, and utility
● completely driven by the controller

controller.pl

● All state is in MySQL and is never cached.

● Handles all I/O from client.pl

● Has an embedded version of client.pl for jobs that need to
access its guts.

● Actually, there is some POE runtime state that is necessary for a
job group to exist that is kept in core only.

– can be problematic if controller.pl crashes or must be
restarted

● Difficult/tedious to test

Open Source

● Priority Health gave me permission to release
the code.

● Dubbed PAGE v0, it is available at:
– http://www.tobert.org/scheduler/index.html

● Not really easy to install/use yet
● v1.0 will be a near 100% rewrite, but reusing

any code it can and much of the design
– OO, testable, tested, auto-generated code

● Help!
mailto:tobert@gmail.com

http://www.tobert.org/scheduler/index.html

Questions?

